СМИ
Машинное обучение ускоряет процесс создания новых материалов

Машинное обучение ускоряет процесс создания новых материалов

Химики и физики Южного федерального университета проводят междисциплинарное исследование, которое поможет определить архитектуры наночастиц по данным спектроскопии рентгеновского поглощения. Этот подход позволяет ускорить процесс обработки данных и поиска наилучших катализаторов для низкотемпературных топливных элементов.

Ученые Южного федерального университета провели совместный междисциплинарный научный проект, посвященный исследованию архитектуры биметаллических наночастиц в составе электрокатализаторов для низкотемпературных топливных элементов. Суть исследования заключается в автоматизации процесса обработки экспериментальных данных за счет использования алгоритмов машинного обучения.

В работе приняли участие сотрудники кафедры теоретической и вычислительной физики Физического факультета ЮФУ, профессор, д.ф.-м.н. Леон Авакян, д.ф.-м.н., профессор Лусеген Бугаев, и сотрудники лаборатории «Наноструктурные материалы для электрохимической энергетики» Химического факультета ЮФУ, д.х.н., главный научный сотрудник Владимир Гутерман, ведущие научные сотрудники Сергей Беленов и Анастасия Алексеенко.

Алгоритмы машинного обучения, примененные учеными, выявили существенную чувствительность теоретических функций радиального распределения металла к архитектуре биметаллических наночастиц. По словам ученых, эти результаты можно применить при определении архитектуры наночастиц по данным спектроскопии рентгеновского поглощения. Результаты данного исследования позволят автоматизировать процесс определения структуры сложных наночастиц, что ускорит поиск высокоэффективных катализаторов для низкотемпературных топливных элементов.

«Результаты были получены на основании проведенных ранее EXAFS измерений на Синхротроне BESSY II (г. Берлин, Германия). Функции радиального распределения атомов в биметаллических наночастицах были получены как теоретически, с использованием метода молекулярной динамики, так и экспериментально, из анализа тонкой структуры спектров рентгеновского поглощения (EXAFS) на Pt L3- и Cu K-краях», – отметила Анастасия Алексеенко.Работа поддержана грантом Российского научного фонда № 20–79–10211. Результаты совместных исследований опубликованы в международном высокорейтинговом журнале Computational Materials Science.

Фото: сайт ЮФУ

Подробнее