Мегаоптика для мегасайнс
Портал Indicator.ru опубликовал интервью с директором Международного научно-исследовательского центра «Когерентная рентгеновская оптика для установок «мегасайенс» Анатолием Снигиревым. Основной темой беседы с ученым стали исследования и инновационные разработки в области синхротронной оптики. Публикуем выдержки из интервью.
–Когда, где и благодаря кому начались работы по изучению и изготовлению оптики для синхротронных установок. Какие научные и повседневные задачи она решает?
– Начну с того, что сама рентгеновская оптика возникла, как только Вильгельм Конрад Рентген открыл рентгеновские лучи. Он попытался сделать линзы, понимая, что ему предстоит работа с электромагнитным излучением, но у него ничего не получилось. К сожалению, Рентген выбрал неправильный подход и сделал заключение, что места для рентгеновских линз в рентгеновском излучении нет. <…> Рентген стал именно первой возможностью посмотреть, что внутри. Понятно, что его применение было особенно актуально для медицины, науки, а также технологий и промышленности, связанной с конструкционными материалами. <…>
Основной же принцип генерации рентгена заключался в следующем. Электронный пучок бьет по мишени, затем он тормозится, и из-за этого возникает излучение. Так было до 40-х годов ХХ века. Американские специалисты установили: когда заряженные частицы гоняют на ускорителях-синхротронах, появляется электромагнитное излучение, включая рентгеновское. Этому открытию сначала не придали значения, а излучение отнесли к «паразитному». Но где-то в 70-х годах прошлого века в мире возникло понимание, что синхротронное излучение может быть очень полезно. Именно в те годы произошел толчок, который показал, что рентгеновское излучение в синхротронах намного ярче и сильнее, чем в рентгеновских трубках. В Советском Союзе все бросились в Новосибирск, оказавшийся в «передовом отряде», где были Англия, Америка, Япония и Европа. В новосибирском центре – в Институте ядерной физики имени Г.И. Будкера СО РАН создали даже не один, а несколько синхротронов, где проводились исследования в области ядерной физики. Они были предназначены для проведения исследований в области физики высоких энергий, чтобы в кольце ускорителя разгонять заряженные частицы – электроны и позитроны – до скорости света, а потом сталкивать их между собой и получать в результате этого определенные реакции и открывать новые частицы.
Тогда все поняли, что синхротроны необходимо использовать. Их стали делать только для того, чтобы использовать именно излучение – не для физики высоких энергий и исследований в этой области, а как источник под рентгеновскую диагностику, а также медицинские и повседневные человеческие задачи. <…>
– Чем уникальна оптика для установок класса «мегасайенс», в частности – для синхротронов?
– < > Исследования и разработки в области рентгеновской и синхротронной оптики мы проводили вместе с моей женой Ириной. Знакомство с ней произошло еще в студенческие годы. Мы вместе окончили один университет МИСИС, вместе работали в Институте проблем технологии микроэлектроники (ИПТМ РАН) в Черноголовке, и нам вместе посчастливилось оказаться в Гренобле на синхротроне ESRF в рамках стипендии Гумбольдта. <…>
В 1995 году мы опубликовали первую работу, которая положила начало развитию методов фазово-контрастной имиджинга, включая микроскопию и томографию, и стала самой цитируемой нашей публикацией.
Следует заметить, что в основе природы такой когерентности излучения лежит просто малый размер самого источника – области излучения, которая измеряется десятком микрон. Это в несколько раз меньше человеческого волоса. К этому предельно малому параметру добавляется и сверхмалая расходимость самого пучка излучения, которая определяется уникальными свойствами излучателей – электронов, которые летят со скоростью близкой к скорости света и излучают рентгеновский свет в очень узком угловом интервале, опять же подобно лазеру. На расстоянии 100 м от источника излучение едва выходит за границу миллиметрового пятна. <…>
Собственно, это свойство малой естественной расходимости позволило нам обратиться к линзам, которые забраковал сам Рентген, так как ошибочно полагал, что линзы должны быть выпуклыми как лупы, с которыми очень часто играют дети и прожигают с помощью солнечного света дырки в бумаге или выжигают что-нибудь, например, на дереве. Но выпуклые линзы не работают для рентгена, так как он имеет обратную природу и для фокусировки надо сделать вогнутые линзы или просто круглые дырки в прозрачном для рентгена материале. Что мы и сделали, насверлив несколько десятков дырок-линз в алюминии. Результаты опубликовали в «NATURE» в 1996 году. Это произвело научный взрыв, скачок в направлении развития преломляющей рентгеновской оптики, которая с этого момента заняла практически все синхротроны второго, третьего, а теперь уже, и четвертого поколения. <…>
Оптика, на мой взгляд, является вторым главным элементом или блоком на любом синхротроне, то есть источник – это самый главный элемент, оптика – вторая важная часть, а третья часть – детекторы – осуществляет уже саму запись, регистрацию излучения.
– Давайте немного поговорим об импортозамещении и использовании вместо зарубежных технологий и материалов российских.
– Сегодня этим вопросом мы занимаемся в Балтийском федеральном университете им. Канта. За 10 лет мы полностью освоили подходы, которые, собственно, и предложили в Европе. Именно поэтому речь здесь идет даже не об импортозамещении, а об уникальной оптике, которую мы же придумали и реализовали вместе с соавторами: с российским ученым из Курчатовского института, Виктором Коном и немецким специалистом Бруно Ленгером, который также проводил исследования в данном направлении. Мы тогда вместе решили, что будет правильно опубликовать работу коллективно. Но, с полной уверенностью, можно говорить, что это российское внедрение, российская инновация, созданная на площадке международного центра, пока в России не было нового синхротрона. Сейчас, благодаря нацпроекту «Наука и университеты», в нашей стране строится Сибирский кольцевой источник фотонов СКИФ в новосибирском наукограде Кольцово. И мы уже приступили к проектированию и изготовлению преломляющей оптики и устройств на ее основе для первых экспериментальных станций.
Сегодня мы живем в прекрасном времени, когда Россия особенно активно развивает собственные установки класса «мегасайенс» и строит синхротроны уже четвертого поколения, к которым относятся и СКИФ в Новосибирске, и проектируемая Курчатовским Институтом суперустановка СИЛА в подмосковном Протвино. Как я понимаю, они будут превосходить те машины, которые были построены ранее в Гренобле (ESRF), Гамбурге (DESY: Deutsches Elektronen-Synchrotron), Чикаго (APS: Advanced Photon Source) и других зарубежных центрах.
Можно сказать, что мы просто вернули линзы на родину и создаем теперь оптику для своих новых синхротронов. Но мы пошли дальше, поэтому сегодня у нас есть определенные инновационные разработки, которые учитывают специфику и использование российских технологий – например, алмазная оптика, оптика на базе искусственных совершенных алмазов, – где нам также принадлежит приоритет.
– Отличается ли оптика друг от друга на разных установках – например, на строящихся СКИФ, СИЛА и других?
– Предложенный нами подход и концепция преломляющей рентгеновской оптики по типу обыкновенных очков или линз, установленных в фотоаппаратах, единые. Эта оптика перекрывает большой диапазон спектра рентгеновского излучения, которое используется на этих синхротронах. Но в зависимости от энергии электронов в кольце, существуют синхротроны, предназначенные для так называемого более «мягкого» излучения с специальными задачами, например спектроскопии. Сейчас же мы говорим о синхротронах, у которых более близкое нам излучение в том смысле, что это излучение используется в очень большом классе лабораторий для исследования материалов, то есть – это «жесткое» излучение. В «жестком» излучении, – которое используется и для просвечивания нас в медицинском кабинете, и для проверки конструкций тяжелых или крупных материалов, – необходимо, чтобы объект был «прозрачен», поэтому такое излучение должно быть высокоэнергетичное, «жесткое». Наши линзы применимы во всем этом диапазоне, но в зависимости от того, какой диапазон мы выбираем, они будут различаться по своим геометрическим характеристикам и материалам. Например, при менее жестком излучении нужно использовать линзы из бериллия, который мало поглощает, но хорошо преломляет. Для «жесткого» излучения необходим более плотный материал вроде алюминия или кремния. Если же нужно их поставить в горячий пучок, то здесь в игру вступают алмазные линзы. Над проектом по разработке алмазных линз для установки СИЛА мы сейчас и работаем. Алмаз – это уникальный, твердый и очень плотный материал, позволяющий выдерживать большие тепловые нагрузки. В России исторически сложились передовые школы роста кристаллов, накоплен уникальный опыт и компетенции по синтезу искусственных алмазов. Не удивительно, что лучшие кристаллы для всего мира делают именно в России. <…>
Фото: Минобрнауки России