Разработан метод сверхточной ионно-пучковой обработки поверхности оптических элементов из монокристаллического кремния
В Институте физики микроструктур РАН – филиале ИПФ РАН (Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова Российской академии наук), разработана методика создания формы поверхности различных рентгенооптических элементов из монокристаллического кремния для мощных источников синхротронного излучения 4-го поколения (СКИФ, Россия и ESRF, Франция). Сложность задачи обусловлена малой длиной волны рентгеновского излучения, сравнимой с размером атома. Формообразование осуществляется методом прецизионной ионно-пучковой обработки. Методика основана на использовании ускоренных ионов с энергией, достаточной для аморфизации приповерхностного слоя кремния. При таких энергиях подавляется развитие шероховатости поверхности при ионном распылении, более того, может происходить и сглаживание вплоть до атомарного уровня (размах высот на поверхности не превышает 1 нм).
Для реализации метода сотрудниками ИФМ РАН была разработана уникальная установка ионно-пучкового травления, которая позволяет осуществлять ионную полировку, коррекцию формы и асферизацию. Сканирование пучком осуществляется согласно специально разработанному алгоритму, который не только не уступает мировым аналогам, но и по некоторым параметрам его превосходит.
Методика обработки монокристаллического кремния позволила начать изготавливать оптику для сверхмощных источников рентгеновского излучения со сверхмалыми размерами рентгеновского пучка (синхротроны 3+ и 4-го поколения, а также лазеры на свободных электронах). В том числе для российских установок класса «мегасайенс»: строящиеся синхротроны СКИФ (Сибирский Кольцевой Источник Фотонов) в Новосибирске и СИЛА – СИнхротрон-ЛАзер (Протвино), а также источник рентгеновского излучения на базе лазерного петаваттного комплекса PEARL в ИПФ РАН (Нижний Новгород). Появление столь мощных источников рентгеновского излучения с малым размером зондирующего пучка позволило приступить к решению задач в области физики сверхвысоких давлений, в материаловедении, в физике взрывов и так далее.
Наиболее перспективным материалом для подложек рентгеновских зеркал и элементов кристаллов-монохроматора на данном этапе считается монокристаллический кремний, который по своим физико-механическим и теплофизическим свойствам превосходит многие другие материалы (карбид кремния, ситалл, кварц), уступая лишь монокристаллическому алмазу.
В рамках глубокого исследования процессов ионного распыления образцов из монокристаллического кремния обнаружено, что существует пороговая энергия (порядка 500 эВ) бомбардирующих поверхность ионов аргона, ниже которой шероховатость поверхности существенно увеличивается с образованием рельефа. При бόльших энергиях шероховатость остается на уровне единиц ангстрем (~10-10 м) и, даже, наблюдается ее сглаживание. Для объяснения обнаруженного эффекта образцы, подвергшиеся ионно-пучковой обработке, исследовались методом комбинационного рассеяния. Исследование показало появление аморфной фазы. Аморфизация приповерхностного слоя приводит к тому, что образец начинает вести себя не как кристаллическая материал, а как аморфный, для которых неоднократно наблюдались эффекты ионной полировки.
Обнаруженный эффект позволяет использовать ионно-пучковое травление для формирования рентгенооптических элементов из монокристаллического кремния, что увеличит возможности современных и перспективных источников рентгеновского излучения.
Авторский коллектив: М.С. Михайленко, А.Е. Пестов, М.В. Зорина, Н. Кумар, И.В. Малышев, Н.Н. Салащенко, А.К. Чернышев, Н.И. Чхало.
Фото: Рентгенооптические элементы и команда, разрабатывающая методики коррекции формы. Источник: ИПФ РАН