СМИ
Ученые выяснили, что можно использовать в качестве анодов в натрий-ионных аккумуляторах

Ученые выяснили, что можно использовать в качестве анодов в натрий-ионных аккумуляторах

Коллектив ученых, в который вошли специалисты Института неорганической химии (ИНХ) им. А.В. Николаева Сибирского отделения РАН, предложили использовать углеродные нанохорны в качестве одного из электродов (анода) в натрий-ионных аккумуляторах. Электронное состояние углеродных нанохорнов можно модифицировать электроотрицательным бромом. Бромированные углеродные нанохорны способны хранить на 20% больше натрия, чем исходные. Фундаментальное исследование ученых позволит создать энергоемкие натрий-ионные аккумуляторы, которые заменят более дорогие литий-ионные.

Постоянно растущие потребности человечества в портативных электроустройствах (от смартфонов до газонокосилок) и электротранспорте увеличивают спрос на электрохимические накопители энергии. Среди них наиболее широко используются аккумуляторы, которые отличаются от первичных батарей возможностью многократной перезарядки без значительных потерь емкости и времени работы.

Литий-ионные аккумуляторы (ЛИА), которые были выпущены на рынок в 1991 году, быстро потеснили другие химические источники тока. Рынок сбыта аккумуляторов постоянно растет, но так же, из-за его ограниченных запасов, увеличивается и цена на литий — ключевой материал, используемый в ЛИА. В настоящее время не существует аналогов ЛИА с большим временем жизни (больше 3000-10000 циклов заряда-разряда) и высокой плотностью энергии около 265 Вт•ч/кг.

Альтернативными и более дешевыми аналогами ЛИА могут стать натрий-ионные аккумуляторы (НИА). НИА обладают высокой скоростью зарядки, сохраняют на 90% больше емкости при низкой температуре (что актуально для северных и сибирских регионов России), более безопасны и совместимы с устройствами, которые работают на ЛИА, где предусмотрено питание на 3.7В.

Принципы устройства и функционирования натрий-ионных аккумуляторов аналогичны ЛИА: в обоих случаях накопление энергии происходит в результате переноса ионов щелочного металла из материала электрода (анода) в материал катода.

В любой вторичной батарейке есть два электрода, материалы которых должны обратимо внедрять с ионом натрия. В процессе заряда аккумулятора натрий выходит из катодного материала и внедряется в материал анода. При разряде ионы натрия будут покидать анод с генерацией электронов, т.е. ток для питания внешнего устройства. Разработка новых эффективных анодных материалов считается одной из проблем, которую необходимо решить для создания натрий-ионных аккумуляторов.

В своем исследовании ученые впервые изучили возможность использования углеродных нанохорнов в качестве анодного материала натрий-ионных аккумуляторов. Они представляют собой полые углеродные капсулы с коническими крышками. Нанохорны обладают высокой удельной площадью поверхности, доступной для адсорбции натрия, а дефекты, формирующиеся при изгибах графеновой сетки, создают дополнительные адсорбционные места.

Ученые показали, что электронное состояние поверхности нанохорнов можно модифицировать при добавлении электроотрицательного брома, пары которого взаимодействуют с изогнутыми графеновыми стенками при комнатной температуре. Добавка всего 5 ат.% брома к нанохорнам оказала положительный эффект на адсорбцию натрия.

«Мы выяснили, что бромированные углеродные нанохорны способны хранить на 20% натрия больше, чем исходные. Предложенный в работе подход может быть применен и для других углеродных наноматериалов с целью их использования в конденсаторах и батарейках, а также для сорбции ионов металлов», — рассказала кандидат химических наук Светлана Столярова.

По словам Светланы Столяровой, для реального производства таких аккумуляторов в дальнейшем необходимы крупномасштабные научно-практические исследования с изучением и подбором всех составляющих аккумулятора — электролита, сепаратора, материалов катода и анода — инженерных решений по созданию электрохимической ячейки и в конечном итоге разработки технологии сборки и производства аккумулятора.

Научное исследование выполнено при финансовой поддержке проекта РНФ №19-73-10068 и Министерства науки и высшего образования Российской Федерации №121031700314-5. Научная статья опубликована в журнале Applied Surface Science (Q1).

Подробнее

Фото: сайт minobrnauki.gov.ru